

Smart Island University

Financial management (MGT511)

By: Rua'a Alqudah

Smart Island University

Week 4

70.

228,200

83.00

83 50

The Basics of Capital Budgeting

What is capital budgeting?

- Analysis of potential additions to fixed assets.
- Long-term decisions; involve large expenditures.
- Very important to firm's future.

Steps to capital budgeting

- 1. Estimate CFs (inflows & outflows).
- 2. Assess riskiness of CFs.
- 3. Determine the appropriate cost of capital.
- 4. Find NPV and/or IRR.
- 5. Accept if NPV > 0 and/or IRR > WACC.

What is the difference between independent and mutually exclusive projects?

- Independent projects if the cash flows of one are unaffected by the acceptance of the other.
- Mutually exclusive projects if the cash flows of one can be adversely impacted by the acceptance of the other.

What is the difference between normal and nonnormal cash flow streams?

- Normal cash flow stream Cost (negative CF) followed by a series of positive cash inflows. One change of signs.
- Nonnormal cash flow stream Two or more changes of signs. Most common: Cost (negative CF), then string of positive CFs, then cost to close project. Nuclear power plant, strip mine, etc.

What is the payback period?

- The number of years required to recover a project's cost, or "How long does it take to get our money back?"
- Calculated by adding project's cash inflows to its cost until the cumulative cash flow for the project turns positive.

Calculating payback 2.4 3 2 0 **Project L** 80 **CF**₊ 100 -100 10 **60 Cumulative** -30 -100 -90 0 50 30 / 80 = 2.375 years Payback₁ = 2 +1.6 2 3 0 **Project S** 50 **CF**₊ 70 100 -100 20 **Cumulative** -30 20 -100 40 0 30 / 50 Payback_s = 1.6 years 1 +

Strengths and weaknesses of payback

- Strengths
 - Provides an indication of a project's risk and liquidity.
 - Easy to calculate and understand.
- Weaknesses
 - Ignores the time value of money.
 - Ignores CFs occurring after the payback period.

Discounted payback period

 Uses discounted cash flows rather than raw CFs.

	0	10%	2	2.7 3
CF _t	-100	10	60	80
PV of CF _t	-100	9.09	49.59	60.11
Cumulative	-100	-90.91	-41.32	18.79
Disc Paybacl	K _L = 2	+ 41.32	60.11 =	2.7 years

Net Present Value (NPV)

Sum of the PVs of all cash inflows and outflows of a project:

$$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+k)^t}$$

What is Project L's NPV?

Year	<u>CF</u> t	<u>PV of CF_t</u>
0	-100	-\$100
1	10	9.09
2	60	49.59
3	80	60.11
	$NPV_{L} =$	\$18.79

 $NPV_{S} = 19.98

Smart Island University

Solving for NPV: Financial calculator solution

- Enter CFs into the calculator's CFLO register.
 - $CF_0 = -100$
 - CF₁ = 10
 - $CF_2 = 60$
 - CF₃ = 80
- Enter I/YR = 10, press NPV button to get $NPV_{L} = 18.78 .

Rationale for the NPV method

- NPV = PV of inflows Cost = Net gain in wealth
- If projects are independent, accept if the project NPV > 0.
- If projects are mutually exclusive, accept projects with the highest positive NPV, those that add the most value.
- In this example, would accept S if mutually exclusive (NPV_s > NPV_L), and would accept both if independent.

Internal Rate of Return (IRR)

IRR is the discount rate that forces PV of inflows equal to cost, and the NPV = 0:

$$0 = \sum_{t=0}^{n} \frac{CF_t}{(1 + IRR)^t}$$

- Solving for IRR with a financial calculator:
 - Enter CFs in CFLO register.
 - Press IRR; $IRR_L = 18.13\%$ and $IRR_S = 23.56\%$.

How is a project's IRR similar to a bond's YTM?

- They are the same thing.
- Think of a bond as a project. The YTM on the bond would be the IRR of the "bond" project.
- EXAMPLE: Suppose a 10-year bond with a 9% annual coupon sells for \$1,134.20.
 - Solve for IRR = YTM = 7.08%, the annual return for this project/bond.

Rationale for the IRR method

 If IRR > WACC, the project's rate of return is greater than its costs.
 There is some return left over to boost stockholders' returns.

IRR Acceptance Criteria

- If IRR > k, accept project.
- If IRR < k, reject project.</p>
- If projects are independent, accept both projects, as both IRR > k = 10%.
- If projects are mutually exclusive, accept S, because IRR_s > IRR_L.

NPV Profiles

A graphical representation of project NPVs at various different costs of capital.

k	<u>NPV</u> L	<u>NPV</u> S
0	\$50 [¯]	\$40 ⁻
5	33	29
10	19	20
15	7	12
20	(4)	5

Drawing NPV profiles

Comparing the NPV and IRR methods

- If projects are independent, the two methods always lead to the same accept/reject decisions.
- If projects are mutually exclusive ...
 - If k > crossover point, the two methods lead to the same decision and there is no conflict.
 - If k < crossover point, the two methods lead to different accept/reject decisions.

Finding the crossover point

- 1. Find cash flow differences between the projects for each year.
- 2. Enter these differences in CFLO register, then press IRR. Crossover rate = 8.68%, rounded to 8.7%.
- 3. Can subtract S from L or vice versa, but better to have first CF negative.
- 4. If profiles don't cross, one project dominates the other.

Smart Island University

Reasons why NPV profiles cross

- Size (scale) differences the smaller project frees up funds at t = 0 for investment. The higher the opportunity cost, the more valuable these funds, so high k favors small projects.
- Timing differences the project with faster payback provides more CF in early years for reinvestment. If k is high, early CF especially good, NPV_S > NPV_L.

Reinvestment rate assumptions

- NPV method assumes CFs are reinvested at k, the opportunity cost of capital.
- IRR method assumes CFs are reinvested at IRR.
- Assuming CFs are reinvested at the opportunity cost of capital is more realistic, so NPV method is the best. NPV method should be used to choose between mutually exclusive projects.
- Perhaps a hybrid of the IRR that assumes cost of capital reinvestment is needed.

Smart Island University

Since managers prefer the IRR to the NPV method, is there a better IRR measure?

- Yes, MIRR is the discount rate that causes the PV of a project's terminal value (TV) to equal the PV of costs. TV is found by compounding inflows at WACC.
- MIRR assumes cash flows are reinvested at the WACC.

Calculating MIRR

Why use MIRR versus IRR?

- MIRR correctly assumes reinvestment at opportunity cost = WACC. MIRR also avoids the problem of multiple IRRs.
- Managers like rate of return comparisons, and MIRR is better for this than IRR.

Project P has cash flows (in 000s): CF_0 = -\$800, CF_1 = \$5,000, and CF_2 = -\$5,000. Find Project P's NPV and IRR. 0 k = 10%-800 5,000 -5,000

- Enter CFs into calculator CFLO register.
- Enter I/YR = 10.
- NPV = -\$386.78.
- IRR = ERROR Why?

-800 [

•Why are there multiple IRRs?

- At very low discount rates, the PV of CF₂ is large & negative, so NPV < 0.</p>
- At very high discount rates, the PV of both CF₁ and CF₂ are low, so CF₀ dominates and again NPV < 0.
- In between, the discount rate hits CF₂ harder than CF₁, so NPV > 0.
- Result: 2 IRRs.

Solving the multiple IRR problem

- Using a calculator
 - Enter CFs as before.
 - Store a "guess" for the IRR (try 10%)
 - 10 ∎ STO
 - IRR = 25% (the lower IRR)
 - Now guess a larger IRR (try 200%)
 200 STO
 IRR = 400% (the higher IRR)
 - When there are nonnormal CFs and more than one IRR, use the MIRR.

When to use the MIRR instead of the IRR? Accept Project P?

- When there are nonnormal CFs and more than one IRR, use MIRR.
 - PV of outflows @ 10% = -\$4,932.2314.
 - TV of inflows @ 10% = \$5,500.

• MIRR = 5.6%.

- Do not accept Project P.
 - NPV = -\$386.78 < 0.
 - MIRR = 5.6% < k = 10%.